Optimal control of the convection-diffusion equation using stabilized finite element methods
نویسندگان
چکیده
In this paper we analyze discretization of optimal control problems governed by convection-diffusion equations which are subject to pointwise control constraints. We present a stabilization scheme which leads to improved approximate solutions even on corse meshes in the convection dominated case. Moreover, the in general different approaches “optimize-then-discretize” and “discretize-then-optimize” coincide for the proposed discretization scheme. This allows for a symmetric optimality system on the discrete level and optimal order of convergence.
منابع مشابه
On the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملA Multigrid Method for an Optimal Control Problem of a Diffusion-convection Equation
In this article, an optimal control problem associated with convection-diffusion equation is considered. Using Lagrange multiplier, the optimality system is obtained. The derived optimal system becomes coupled, non-symmetric partial differential equations. For discretizations and implementations, the finite element multigrid V -cycle is employed. The convergence analysis of finite element multi...
متن کاملStabilized Finite Element Methods for Feedback Control of Convection Diffusion Equations
We study the behavior of numerical stabilization schemes in the context of linear quadratic regulator (LQR) control problems for convection diffusion equations. The motivation for this effort comes from the observation that when linearization is applied to fluid flow control problems the resulting equations have the form of a convection diffusion equation. This effort is focused on the specific...
متن کاملAnalysis of a Stabilized Finite Element Approximation of the Transient Convection-Diffusion Equation Using an ALE Framework
In this paper we analyze a stabilized finite element method to approximate the convection-diffusion equation on moving domains using an arbitrary Lagrangian Eulerian (ALE) framework. As basic numerical strategy, we discretize the equation in time using first and second order backward differencing (BDF) schemes, whereas space is discretized using a stabilized finite element method (the orthogona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 106 شماره
صفحات -
تاریخ انتشار 2007